Branches in random recursive k-ary trees

نویسندگان

چکیده مقاله:

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

branches in random recursive k-ary trees

in this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. we also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

Degrees in $k$-minimal label random recursive trees

This article describes the limiting distribution of the degrees of nodes has been derived for a kind of random tree named k-minimal label random recursive tree, as the size of the tree goes to infinity. The outdegree of the tree is equal to the number of customers in a pyramid marketing agency immediatly alluring

متن کامل

Recursive Generation of k-ary Trees

In this paper we present a construction of every k-ary tree using a forest of (k− 1)ary trees satisfying a particular condition. We use this method recursively for the construction of the set of k-ary trees from the set of (k−1)-Dyck paths, thus obtaining a new bijection φ between these two sets. Furthermore, we introduce a new order on [k]∗ which is used for the full description of this biject...

متن کامل

The total Steiner k-distance for b-ary recursive trees and linear recursive trees

We prove a limit theorem for the total Steiner k-distance of a random b-ary recursive tree with weighted edges. The total Steiner k-distance is the sum of all Steiner k-distances in a tree and it generalises the Wiener index. The limit theorem is obtained by using a limit theorem in the general setting of the contraction method. In order to use the contraction method we prove a recursion formul...

متن کامل

ON THE EXTERNAL PATH LENGTH OF RANDOM RECURSIVE k-ARY TREES

In this paper, we determine the expectation and variance of Xn the external path length in a random recursive k-ary tree of size n.

متن کامل

Longest paths in random Apollonian networks and largest r-ary subtrees of random d-ary recursive trees

Let r and d be positive integers with r < d. Consider a random d-ary tree constructed as follows. Start with a single vertex, and in each time-step choose a uniformly random leaf and give it d newly created offspring. Let Td,t be the tree produced after t steps. We show that there exists a fixed δ < 1 depending on d and r such that almost surely for all large t , every r-ary subtree of Td,t has...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 38  شماره 2

صفحات  323- 331

تاریخ انتشار 2012-07-15

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023